Lustiges Verhalten beim Plotten eines Polynoms mit hohem Grad und großen Koeffizienten

  • Ich versuche, ein Polynom mit dem Grad $ 29 $ auf der Domäne $ [0,1] $ mit ziemlich großen Koeffizienten zu zeichnen:

     [pre> poly[z_] = -1.1126829840302355` + 113.28783661058498` z - 
    9878.742379213338` z^2 + 584715.8646149524` z^3 - 
    2.280647160113914`*^7 z^4 + 6.176933520283158`*^8 z^5 - 
    1.217581378062843`*^10 z^6 + 1.811582263559531`*^11 z^7 - 
    2.0920133095023196`*^12 z^8 + 1.9158620445090305`*^13 z^9 - 
    1.414955836879161`*^14 z^10 + 8.539129365981781`*^14 z^11 - 
    4.254563022912091`*^15 z^12 + 1.764182366816184`*^16 z^13 - 
    6.125080435776876`*^16 z^14 + 1.7883504482275766`*^17 z^15 - 
    4.403320010637656`*^17 z^16 + 9.154951756734264`*^17 z^17 - 
    1.6068672087698447`*^18 z^18 + 2.3765393965161196`*^18 z^19 - 
    2.950846281328122`*^18 z^20 + 3.0579497598096415`*^18 z^21 - 
    2.6220913470110597`*^18 z^22 + 1.837651151556163`*^18 z^23 - 
    1.0344252684666292`*^18 z^24 + 4.5602474296077024`*^17 z^25 - 
    1.5155510563521117`*^17 z^26 + 3.568596763872067`*^16 z^27 - 
    5.304183668348243`*^15 z^28 + 3.7404713997980006`*^14 z^29
     

    Das Problem ist, dass, wenn ich versuche, das Polynom zu zeichnen, alles in der Nähe von 0 in Ordnung ist. In der Mitte des Einheitenintervalls beobachte ich jedoch ein unregelmäßiges Verhalten, wie unten gezeigt. Kann mir jemand sagen, warum das so ist und wie ich es vermeiden kann?

     Plot[{poly[z]}, {z, 0, 1}, WorkingPrecision -> precision]
     

    Lustiges Verhalten beim Plotten eines Polynoms mit hohem Grad und großen Koeffizienten

    14 March 2016
    helloandreDrahcir
0 answers